
PROCEEDINGS, TOUGH Symposium 2003
Lawrence Berkeley National Laboratory, Berkeley, California, May 12–14, 2003

 - 1 -

APPLICATION OF AUTOMATIC DIFFERENTIATION IN TOUGH2

Jong G. Kim1 and Stefan Finsterle2

1Argonne National Laboratory
9700 S. Cass Avenue, Mail Stop Bldg 362/E325

Argonne, IL 60439
e-mail: jgkim@anl.gov

2Lawrence Berkeley National Laboratory
One Cyclotron Road, Mail Stop 90-1116

Berkeley, CA 94720
e-mail: SAFinsterle@lbl.gov

ABSTRACT

Automatic differentiation (AD) is a way to accurately
and efficiently compute derivatives of a function
written in computer codes. We describe the proce-
dures necessary to apply the AD method to the multi-
phase, multicomponent, nonisothermal flow simula-
tor TOUGH2. In particular, we apply the AD method
to the ECO2 module of the TOUGH2 code to explore
a scheme for efficiently calculating the Jacobian
matrix, which is required by the Newton-Raphson
method for handling the nonlinearities arising at each
iteration. The ECO2 module allows TOUGH2 to
accurately simulate CO2 sequestration in aquifers.
The robustness and efficiency of the AD-generated
derivative codes are compared to the conventional
derivative computation approach based on first-order
finite differences (FD). Our result with the test
problem set indicates that the AD-generated deriva-
tive code could improve the convergence behavior in
the linear solution step, taking less computational
time to compute one linear matrix system.

INTRODUCTION

Geologic formations such as oil/gas fields, deep
saline aquifers, or coal seams provide a great oppor-
tunity for the practical development of greenhouse
gas storage systems. Numerical simulation tools are
used in designing and analyzing field operation cases
of the geologic sequestration systems, capturing
complex processes involving fluid flow and changes
in the physical and chemical properties of the porous
medium. The governing flow equations for these
systems are based on mass- and energy-balance
considerations, resulting in a set of coupled partial
differential equations (PDEs).

Since the analytical solution of the PDE system is
very limited, various numerical approaches such as
finite difference, finite volume, and finite element
methods are used to obtain the solution over the
discretized PDE domain. In these numerical
approaches, the differential equations are reduced to
a set of linear and nonlinear algebraic equations that

relate all the involved primary variables at each grid-
block of the discretized domain. Thus, the efficiency
of a numerical simulator is determined to a large
extent by the efficiency and robustness of the solu-
tion procedures for these algebraic equations.
Nonlinear algebraic equations can be solved by
various implementations of Newton’s method as
employed in the TOUGH2 code (Pruess, 1991).

In TOUGH2, Newton’s method is implemented by
seeking a sequence of solution increments xp+1 - xp for
a given set of nonlinear algebraic equations R(x) = 0.
Starting with an initial guess x0, the Newton iteration
continues until a predefined convergence tolerance is
met. The algebraic equation for Newton’s method is
written as follows:

)()(1 ppp
p

xRxx
x

R −=−
∂
∂

+ (1)

Here, ∂R/∂x is the Jacobian matrix of the partial
derivative of the given nonlinear function R with
respect to the independent primary variable x. The
function R represents the residuals of the discretized
governing equations in each gridblock. In the current
version of TOUGH2, the first-order finite-difference
(FD) method is used to compute an approximation of
the required Jacobian matrix as follows:

x

xRxxR

x

R

∆
−∆+≅

∂
∂)()(

 (2)

As indicated in our previous study (Kim and
Finsterle, 2002), the accuracy of the Jacobian matrix
∂R/∂x depends on the step-size increment x∆ (see
Equation (2)). Different step sizes could lead to a
different convergence behavior during the Newton
iteration. This is because a small step size could
cause round-off errors by subtracting two almost
equal numbers, or a large step size could result in
truncation errors as the omitted higher-order terms in
the FD approximation become significant. Further-
more, if highly nonlinear functions are involved,

 - 2 -

these errors can lead to a breakdown of the Newton
iteration.

As an alternative to the FD method for computing
partial derivatives, we have implemented automatic
differentiation (AD) techniques into TOUGH2 to
provide analytically computed Jacobian matrix
elements. We implemented the AD approach into the
ECO2 module of TOUGH2. This module was devel-
oped by Pruess and Garcia (2002) for the simulation
of CO2 injection systems in deep saline aquifers, with
fluid properties for mixtures of water and super-
critical CO2 in the pressure and temperature range of
75 bars < P < 400 bars and T > 35 oC.

In the following sections, we briefly describe the AD
method, after which we discuss its implementation
into TOUGH2/ECO2. We then report on numerical
benchmark experiments comparing AD- and FD-
based versions of the code, before we conclude with
a brief outline of future work.

AUTOMATIC DIFFERENTIATION (AD)

The AD method is based on computer algebra, which
is applied to calculate partial derivatives of a coded
function. For example, if a function R is computed
through the elementary functional operations of y(x)
and z(x), the chain rule can be applied to compute the
partial derivative of function R with respect to the
independent variable x as follows:

{ }

x

z

z

R

x

y

y

R

x

xzxyR

∂
∂

∂
∂+

∂
∂

∂
∂=

∂
∂)(),(

 (3)

The elementary derivatives for elementary functions
in the equation are analytically known a priori and
can be provided in the form of a numerical library.
Based on this fundamental concept of computer
algebra, various implementation techniques for AD
processing have been developed. A detailed overview
of the methodology and applications of AD can be
found in Griewank and Coliss (1991). Juedes (1991)
provided an extensive survey of AD tools available to
augment computer programs written in Fortran, C, or
C++.

The AD tool used in this study is the ADIFOR
(Automatic Differentiation of Fortran, Bischof et al.,
1998), developed by Argonne National Laboratory
and Rice University. ADIFOR allows the direct
manipulation of a model code to generate a derivative
code that can compute analytical derivatives of the
input model code, along with the original model
outputs. The main advantage of the AD-generated
derivative code is that all the partial derivatives are
computed from a single run of a model code, whereas
the FD method requires additional model runs to
compute one partial derivative. Furthermore, the AD

approach computes derivatives with an accuracy up
to the arithmetic precision of the computer (Bischof
et al., 1998), since all the involved derivative
computations are performed analytically. The proce-
dure for generating a derivative code with ADIFOR
is shown in Figure 1.

Subroutine sat(T,P)
Pre-declaration
………
Evaluate P(T)
………

Subroutine g_sat(T,P,dP)
Pre-declaration
ADIFOR-declaration
………
Evaluate P(T)
Evaluate derivative (dP/dT) dP(T)
………

ADIFOR Control script

Figure 1. Schematic diagram of an automatic differ-

entiation tool used to generate a new
derivative code.

IMPLEMENTATION OF TOUGH2-AD

The governing equations of the TOUGH2 model can
be written in a general form as follows (Pruess,
1991):

 ∫∫∫ +Γ⋅=
Γ nnn V

kk

V

k dvqndFdvM
dt

d
 (4)

This equation describes the balance of mass and
energy for a given arbitrary domain Vn bounded by
the surface Γn. The quantity M in the accumulation
term of this equation represents mass (m) or internal
energy (h) per unit volume. The total mass/heat flux
F and source/sink q terms are written in the right-
hand side of the equation. Each mass component is
labeled by k=1,…, NK, where NK is the number of
components. After the surface and volume integra-
tions are applied for each term of the above equation,
a discretized form of the equation is obtained:

 k
n

k
nmnm

n

k
n qFA

Vdt

dM
+= ∑1

 (5)

where Mn is the average value of M over gridblock
volume Vn, Anm is the interface area between gridblock
n and m, and Fnm is the average value of the normal
component of F over the surface segment Anm. After a
first-order finite-difference scheme is applied to the

 - 3 -

time-dependent term (left-hand side) of Equation (5),
the final residual equation is derived as follows:









+∆−−= ++++ ∑ 1,1,k,1k,1 ik
nn

m

ik
nmnm

n

i
n

i
n

k, i
n qVFA

V

t
MM R

 0= (6)

This residual equation is solved by Newton’s method.
As described in this paper’s introduction, Newton’s
method requires setting up a system of linear equa-
tions consisting of the Jacobian matrix and the resid-
ual vector. Here, the Jacobian matrix is the sensitivity
(or derivative) of the residual vector with respect to
the selected primary variables. The typical primary
variables of the TOUGH2 code are pressure, satura-
tion, mass fraction, and temperature.

In TOUGH2, two routines construct the linear equa-
tion system, which is then solved by means of either
direct or iterative linear solvers. The thermophysical
properties needed to assemble Equations (3) through
(6) are calculated in the ECO2 module. Key variables
to be computed in the ECO2 module are indicated in
Figure 2. This module is also required to provide the
derivatives of the thermophysical properties with
respect to the primary variables. Currently, these
derivatives are computed by the FD method. The
computations needed to assemble the linear equation
system consisting of the residual vector and the
Jacobian matrix are performed by the FLOW module.
The same FLOW module is used for different appli-
cations of TOUGH2 based on different equation-of-
state (EOS) modules, because the same mathematical
form of Equation (1) can be applied to solve different
multicomponent, multiphase flow systems, regardless
of the nature and number of fluid phases and compo-
nents. Only a different EOS module is needed to
obtain the appropriate thermophysical properties of
the fluids involved. This flexibility is a unique feature
of the TOUGH2 code—a flexibility also maintained
when implementing the AD method into
TOUGH2/ECO2.

Many subroutines are used in the ECO2 and FLOW
modules to perform the necessary calculations. To
process the code with AD, the simplest approach is to
combine all of these subroutines into one code and
then generate one derivative code in a single AD
processing step. However, mixing all the involved
subroutines into one code will result in a loss of
flexibility by breaking up the modular structure of
TOUGH2. To avoid this, we implemented the AD
method separately for each involved subroutine.
After processing each subroutine with AD, we used
the chain rule to combine derivative information from
each routine, arriving at the final Jacobian matrix
elements (∂R/∂xj) as follows:

 ∑
+=

++

∂
∂

⋅
∂

∂=
∂

∂

NK,j i

j

j

k,i
n

pi

k,i
n

 x

 y

 y

 R

 x

 R

81

11

 (12)

Here, xi indicates each independent primary variable;
the thermophysical variables computed in the ECO2
module are denoted by yj (see Figure 2). The term
∂yj/∂xi indicates the derivative values of the thermo-
physical variables with regard to the primary
variables. These derivatives are computed analyti-
cally by a new ADIFOR-processed ECO2 code. The
derivative information computed by the new ECO2
module is combined with the derivative term of the
residual vector ∂R/∂yj of Equation (12). This is the
term for the sensitivity data of the residual equation
(6) with regard to the thermophysical variables. The
new routines required to analytically compute the
necessary sensitivity term ∂R/∂yj are added to the
FLOW module. A schematic diagram describing
ADIFOR processing of the two key TOUGH2
modules is shown in Figure 3.

Primary variables
Pressure P
Temperature T
Saturation S

Secondary variables
Phase saturation S
Relative permeability kr
Viscosity µ
Density ρ
Specific enthalpy h
Capillary pressure Pc
Diffusion factor 1 a
Diffusion factor 2 b
Mass fraction 1 x1

Mass fraction NK xNK

Figure 2. Thermodynamic properties of the

TOUGH2 module ECO2 for modeling
CO2 injection into saline aquifer systems

ECO2 module

FLOW module

ADIFOR
&

manual implementation

New ECO2 module
to compute derivatives

New ECO2 module
to compute derivatives

Linear solver
and Newton iterations

Figure 3. Automatic differentiation of TOUGH2

equation-of-state and flow modules using
ADIFOR

 - 4 -

NUMERICAL EXMPERIMENTS

A simple one-dimensional radial flow problem (see
Figure 4) was chosen to check the correct imple-
mentation of the AD method into TOUGH2. All the
test runs were performed in isothermal mode at T =
45oC and initial pressure of P = 120 bars. CO2 was
injected into the first element at a rate of 100 kg/s,
with a constant enthalpy of 53.8 kJ/kg. Initially, the
domain was fully saturated with water.

 CO2: 100 kg/sec

R=∞

100 m

Figure 4. Schematic domain of the test problem

Table 1 shows some elements of the Jacobian matrix
computed by both AD and FD methods at the first
Newton iteration. The FD derivatives were computed
using increment factors of 10-7 and 10-9. The AD-
computed derivatives match well with the FD-
computed derivatives, especially with an increment
factor of 10-9. However, we observed that the FD
method with the larger increment factor of 10-7
resulted in derivatives containing serious truncation
errors. Note that the current default increment factor
in the TOUGH2 code is 10-7.

Table 1. Jacobian matrix elements calculated with
AD and FD derivative codes

Table 2 shows the computational running time of
each derivative code for different problem sizes. The
AD-processed modules perform well compared to the
FD-based modules. In both codes, the EOS module
took up most of the computational time. Average
improvement using the AD derivative code was on
the order of 30%.

Table 3 shows the number of iterations required to
meet the convergence criterion for both the linear and
nonlinear solution steps for different injection rates of
the same test problem set. The generalized minimum
residual solver (DSLUGM) was used with no Z-
preconditioning step in the linear solution step. We
set a reduced convergence criterion of 1.E-16 to
observe the effect of the Jacobian matrix accuracy on
the numbers of iterations in the linear solution step.
The table shows that the convergence of the linear
solver is strongly dependent on the method used to
compute the Jacobian matrix. A different step size of
the FD method leads to a different number of
iterations in the linear solution step, caused by the
different accuracy of the Jacobian matrix. In most test
cases, fewer iterations were taken by the AD code.
With this test problem, the number of Newton
iterations were identical for both AD- and FD-based
codes, probably because the test problem is relatively
easy to solve with a wide convergence radius in the
solution search space of the Newton method.

Table 2. Performance comparison of AD- and FD-
based codes for computing one Jacobian matrix

Table 3. Number of iterations for AD- and FD-based

codes for linear and nonlinear solution steps

Matrix
element

(i,j)
AD FD (•= 1.E-7) FD (•= 1.E-9)

1, 1 -2.62991E-06 -2.62944E-06 -2.62944E-06

1, 3 9.05933E+03 8.82778E+03 9.05757E+03

2, 1 -1.78258E-07 -1.78229E-07 -1.78229E-07

2, 3 5.70511E+02 5.55929E+02 5.70400E+02

3, 3 4.64261E+02 4.50487E+02 4.64158E+02

4, 1 8.71731E-07 8.71583E-07 8.71583E-07

4, 3 -2.84286E+03 -2.76945E+03 -2.84230E+03

AD FD Total
elements EOS FLOW EOS FLOW

AD im-
prove-
ment

130 0.363 0.003 0.472 0.008 28.1%

630 1.758 0.154 2.291 0.366 28.0%

1630 4.533 0.401 5.912 0.952 28.1%

2630 7.323 0.574 9.566 1.355 27.7%

 Linear
iterations

Newton
iterations

Total
CPU
time

AD
improve-

ment

Injection rate = 100 kg/sec

AD 57 9 25.8

FD
∆=1.E-7

107 9 64.6 60%

FD
∆=1.E-9

53 9 32.0 19%

Injection rate = 200 kg/sec

AD 42 9 19.1

FD
∆=1.E-7

59 9 35.7 47%

FD
∆=1.E-9

66 9 39.8 52%

Injection rate = 400 kg/sec

AD 73 13 33.2

FD
∆=1.E-7

80 13 48.3 31%

FD
∆=1.E-9

100 13 60.4 45%

 - 5 -

CONCLUSIONS AND FUTURE WORK

In this paper we describe a methodology for imple-
menting automatic differentiation techniques into the
TOUGH2/ECO2 multiphase flow simulator. Auto-
matic differentiation provides accurate analytical
derivatives for the Jacobian matrix, which is calcu-
lated to handle numerically the nonlinear behavior
inherent in nonisothermal, multiphase flow problems.
In the numerical experiments, we determined that the
automatically generated AD code provides a faster
derivative computation, with faster convergence in
the subsequent linear solution steps, compared to the
traditional finite-difference method. For computation
of one linear matrix system, the reduction in compu-
tational running time resulting from the AD deriva-
tive code was about 28%. Furthermore, the AD
approach enhances the efficiency of the linear solu-
tion step, which resulted in total computational time
improvement of up to 60%.

In future work, we plan to measure the computational
performance of the AD derivative code using differ-
ent problems with stronger nonlinearities. In addition,
we will examine how the analytical derivatives relate
to the convergence behavior of the nonlinear
(Newton-Raphson) iterations, as well as the solution
of the iterative linear equation solvers currently
implemented in TOUGH2. Finally, AD techniques
will be implemented to calculate the sensitivity
matrix used in the various minimization algorithms of
the iTOUGH2 inverse modeling code (Finsterle,
1999).

ACKNOWLEDGMENT

This work was supported by the U.S. Department of
Energy, Office of Fossil Energy, under Contract No.
W-31-109ENG-38 and DE-AC03-76SF00098. The
encouragement of Scott Klara and Charles Byrer and
the review comments by André Unger and Keni
Zhang are gratefully acknowledged.

REFERENCES

Bischof, C., A. Carle., P. Hovland, P. Khaderi, and
A. Mauer, ADIFOR 2.0 User's Guide (Revision D),
Report ANL/MCS-TM-192, Argonne National
Laboratory, Argonne, Illinois, 1998 (see also
http://www.mcs.anl.gov/adifor).

Finsterle, S., iTOUGH2 User’s Guide, Report LBNL-
40040 (revised), Lawrence Berkeley National
Laboratory, Berkeley, California, 1999 (see also
http://www-esd.lbl.gov/iTOUGH2).

Griewank, A., and G. Corliss (eds), Proceedings of
the Workshop on Automatic Differentiation of
Algorithms: Theory, Implementation, and Applica-
tion, 315–330, Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, 1991.

Juedes, D., "Taxonomy of Automatic Differentiation
Tools," in Proceedings of the Workshop on Auto-
matic Differentiation of Algorithms: Theory, Imple-
mentation, and Application, 315–330, A. Griewank
and G. Corliss (eds), Society for Industrial and
Applied Mathematics (SIAM), Philadelphia, 1991.

Kim, J.G., and S. Finsterle, "Application of Auto-
matic Differentiation for the Simulation of Noniso-
thermal Multiphase Flow in Geothermal Reservoirs,"
in Proceedings of the Twenty-Seventh Workshop on
Geothermal Reservoir Engineering, Stanford Univer-
sity, Stanford, California, January 28–30, 2002 SGP-
TR-171.

Pruess, K., TOUGH2 A General-Purpose Numerical
Simulator for Multiphase Fluid and Heat Flow,
Report LBL-29400, Lawrence Berkeley Laboratory,
Berkeley, California, 1991 (see also http://www-
esd.lbl.gov/TOUGH2).

Pruess, K., and J. Garcia, "Multiphase Flow Dynam-
ics during CO2 Injection into Saline Aquifers,"
Environmental Geology, Vol. 42, pp. 282–295, 2002.

